Multistatic Radar Workshop 2025

SURFACE TARGETS VELOCITY VECTOR
ESTIMATION EXPLOITING CONSTELLATIONS
OF SAR SYSTEMS
T TN

— S—” v
DEPARTMENT OF INFORMATION ENGINEERING,

ELECTRONICS AND TELECOMMUNICATIONS

SAPIENZA

UNIVERSITA DI ROMA

i

F.)
o
3
o
T
(0]
7]
i)
v
=]
Q@
@
=z
o
<
(=]
[«
[=4
o
=]



Introduction & Objective of the work

_
» Synthetic Aperture Radar (SAR): all-weather and all-day image capabilities

* Largely used for continuous monitoring of Surface moving target monitoring (civil and military
applications)

» In general velocity estimation techniques exploit effects induced by uncompensated target motion in the SAR
image focused with respect to the stationary scene

R.Klemm; U.Nickel; C.Gierull; P.Lombardo; H.Griffiths; W.Koch. “Novel radar techniques
andapplicationsVol.17,2017
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Introduction & Objective of the work

_

» Synthetic Aperture Radar (SAR): all-weather and all-day image capabilities
* Largely used for continuous monitoring of Surface moving target monitoring

applications)

(civil and military

» In general velocity estimation techniques exploit effects induced by uncompensated target motion in the SAR
image focused with respect to the stationary scene

« Along-track velocity 9| Defocusing effect

e

« Radial velocity elAzimuth displacement

R.Klemm; U.Nickel; C.Gierull; P.Lombardo; H.Griffiths; W.Koch. “Novel radar techniques

andapplicationsVol.17,2017
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Objective of the work
_ — o

» Dual-channel single platform SAR > New Space Era small satellite
Availability of along-track interferometric phase: constellations (ICEYE, Capella Space,
« Radial motion information Umbra...):
- Traditionally used for ocean currents estimation  High resolution wide swath solutions
« Joint exploitation with sub-aperture approaches or - Few examples of motion estimation
refocusing based approaches (i.e. residual doppler techniques
rate pres)

,,,,,,,,,,,,,,,, Focus of the work
"""""""""""""""""" * Full velocity vector estimation method of surface movers
detected in SAR images acquired by two SAR platforms, each
one with dual antenna receiver

-
-

* joint exploitation of two along-track interferometric phase (ATI)
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Outline

» Interferometric SAR geometry and
signal model

Discussion of the estimation method
Velocity vector estimation performance
Theoretical analysis

Optimization Strategy

v V VWV V V¥V

Conclusions

A. Budillon, C. H. Gierull, V. Pascazio and G. Schirinzi, "Along-Track Interferometric SAR Systems for Ground-Moving Target Indication:
Achievements, Potentials, and Outlook," in IEEE Geoscience and Remote Sensing Magazine, vol. 8, no. 2, pp. 46-63, June 2020
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Interferometric SAR geometry and signal model

Platform2
P Rx_qg Tx Rxgy

Platform 1

» Moving Target already detected

» Range compressed signal by the i-th receiving channel (i = 0,1) in
slow time domain t, from k-platform

27T
Bry + Ay e—]Tqbk(Xsk,Ys,H,Vx,Vy,t)
2

si(t) = rectg,., —an, <t —

*  Bri, Ari: Temporal extremes of Target visibility window

« Two-way bistatic range distance in the phase term:

P = \/HZ + Kot + (V= V)02 + (Y = 1yt)” +\/H2 + Ky + di + (V= V)02 + (Y, — V1)’

SURFACE TARGETS VELOCITY VECTOR ESTIMATION EXPLOITING CONSTELLATIONS OF SAR SYSTEMS

Ylenia D’ Onofrio, Debora Pastina, Pierfrancesco Lombardo



Estimation Algorithm
_ ' o

Sok (t) S1k(t)
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Estimation Algorithm
_ o

Sok (1) S1k(t)
Io(x,y)  I1x(x,y)
Azimuth Azimuth
compression compression
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Estimation Algorithm
_ o

Fou (0 W@y Ty
ok X,y 1k(X, Y . .
» Linearized Model
Azimuth Azimuth
compression compression
. Xpk\  dj
min( By, Bpr+—br 4oL 4 4 x , Xpk 2
I (x y )E ( et V) ZVeJTn(RFk—RTik)+17nNik(t—%k)ﬂﬂﬂres,ik(t—%k) dt
Lk Pk’ Pk Xpk d;
max(ATk,AFk+7)+W

I Coregistration I
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Estimation Algorithm
_ o

Fou (0 W@y Ty
ok X,y 1k(X, Y . .
» Linearized Model
Azimuth Azimuth
compression compression

mln(BTk,BFk+ ‘7; ) +

2V AT e e i TN (1 YPR) 4 (k)
Iik(xpklypk) ~ f o d, ] 1 (RFk—RTiK)+] 1 le(t % )+J7Tﬂres,lk(t vV ) dt
max(ATk,AFk+ % )+ﬁ
I Coregistration I
Barik » Measurements Model
V—=V)x
i _ (Xsk + ( Vx) pk) 174
Parr = <lorl = — (R Rro) =~ d + Vyqai
AT,k Ok‘1k 2 Tik — R\Tok AV RFK radial
Xpk
(Yo =V "BE) + (V = V) K + (V = V) By

Vyadial =
radial RFk
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Estimation Algorithm
_ o

Sor () () for(ty)  Tii(x,9)
ok X,y 1k(X, Y . .
» Linearized Model
Azimuth Azimuth
compression compression

mln(BTk,BFk+ ‘7; ) dl

Vyadial =
radial RFk

2
Iix (xp y ) ~ f 2 ]'4Tn(RFk_RTik)+j4%Nik(t_%%)+]'7Tﬂres,ik(t_¥) dt
max(ATk,AFk+ % )+ﬁ
I Coregistration I
Barik > Measurements Model
__________________ V—V)x
: Dual platform ; . P (Xsk + ( Vx) pk) 14
: Paria Pari2 : Garrk = <lopliy = T (Rrik — Rrox) = ﬁd R + Viadial
| v “' | Xpi K Xpk
: I System Inversion I : —Vy (YS — Vy 7) + V-V (Xg + (V — Vx) 7)
l |
l |
| l
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Performance analysis
_ — o

» Complex SAR image amplitude corrupted by zero mean additive white gaussian disturbance

» Small error approximation for estimation accuracies o5, and Osv,
measurements errors ¢ 411, ¢ 4712 mapped in target velocity estimation errors 6V,, 6V, :

9 5 Oparis  Odarm
o-(SVx 0 . Z_l 0-¢AT11 0 Z_lT Z _ O(SVX) O(SV_’)’)
0 o (Zwy 0 0'(21, 12 Oparrz  Oarr
|0(8Vy)  O(8Vy) |

> Measurements variances

2 jn (d” B ¢Meanj)2(1 B |pck|2) lock| C05(¢’ - ¢AT1,k) a’”CCOS(—|Pck| COS(‘P’ - ¢AT1,k)))
O *= -~ 1+
2T (1 = (Ipcicl cos(¢" = buri ) ) \/1 — (lpck | cos(¢p’ — ¢AT1,k))2

do’

Pck = 1

1+ SNR,

*Li, Q. He, "On the Ratio of Two Correlated Complex Gaussian Random Variables," in IEEE CL, vol.23, no. 12, pp. 2172-2176, Dec. 2019
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Performance analysis
_ — o

» Complex SAR image amplitude corrupted by zero mean additive white gaussian disturbance

» Small error approximation for estimation accuracies o5, and Osv,
measurements errors ¢ 411, ¢ 4712 mapped in target velocity estimation errors 6V,, 6V, :

9 5 Oparis  Odarm
o-(SVx 0 . Z_l 0-¢AT11 0 Z_lT Z _ O(SVX) O(SV_’)’)
0 o (Zwy 0 0'(21, 12 Oparrz  Oarr
|0(8Vy)  O(8Vy) |

> Measurements variances

2 jn (d” B ¢Meanj)2(1 B |pck|2) lock| C05(¢’ - ¢AT1,k) a’”CCOS(—|Pck| COS(‘P’ - ¢AT1,k)))
O *= -~ 1+
2T (1 = (Ipcicl cos(¢" = buri ) ) \/1 — (lpck | cos(¢p’ — ¢AT1,k))2

do’

SNRy| Signal-to-Noise Ratio

*Li, Q. He, "On the Ratio of Two Correlated Complex Gaussian Random Variables," in IEEE CL, vol.23, no. 12, pp. 2172-2176, Dec. 2019
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Case study

Platform2 » Common LEO satellite parameters
Platform 1 H 570000 m d 6/4 m
= Y, ]26579536m | 4 0,03 m
= 0; 25° V 7,5 km/s

» Squint Angle

* High squint geometry ¢, = 26°

» Signal-to-Noise Ratio (SNR)
* Interferometric phase before autofocus SNR = SNR(V,,V},),

» Moving Target motion

Slant range velocity (V;,sin6;) and along-track velocity (V)
ranging from -20 m/s to 20 m/s
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Case study

Platform2 » Common LEO satellite parameters

Platform 1 H 570000 m d 6/4 m
= Y, |265795,36m A 0,03 m
X 0, 25° V 7.5 km/s

» Squint Angle

* High squint geometry ¢, = 26°

» Signal-to-Noise Ratio (SNR)

* Interferometric phase before autofocus SNR = SNR(V,,V},),
* Interferometric phase after autofocus SNR = SNR,

SNR, = SNR(0,0) = [100,1000] cos¢g
________ » Moving Target motion

: Slant range velocity (V;,sin6;) and along-track velocity (V)

I ranging from -20 m/s to 20 m/s
|
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Performance assessment results

_

O Interferometric phase before autofocus

20

Lk (2 pic ypk)|2

SNRy, = SNRy(Vy, Vy) = SNR, B — A2

m/s|

» The estimation error is affected by the SNR e

worsening due to defocusing effect T

20

Standard Deviation of I/,
SNR, = 100cos¢g SNR, = 1000cos¢;

-40
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Standard Deviation of 1/,
SNR, = 100cos¢g SNR, = 1000cos¢;

10 |

0 1

12

2 20

-40 -20 0 20 40 -40 -20 0 20 40

Vy [m/s] Vy [m/s]

» As the SNR increases, a general

improvement in performance can be
observed

» Theoretical analysis validation
theoretical results and Monte Carlo
simulations largely in agreement




Performance assessment results
_

O Interferometric phase after Autofocus

. Standard Deviation of Standard Deviation of V,,
SNR = SNR; = 1000cos™ ¢,

» Maximum SNR for all motion conditions |
= general improvement at  high
velocities; 0 |
= Estimation variances independent of |
velocity searching for optimum .

configuration

Vi [m/s]
Vi [m/s]

10

20

Vy [m/s]

> Best performance: Standard Deviation of V, and V,, = 2 m/s

» Theoretical analysis validation
theoretical results and Monte Carlo simulations largely in agreement
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Optimization of the two-satellite constellation
_ — -
) Standard Deviation of 7, Standard Deviation of V,,
> Increasing Squint angle ° e ] S S e B ST G e

. Smaller SNR due to range attenuation
. Higher sensitivity to along-track velocity g
. Worse cross-track estimation capability &

35 [

oy, [m/s]

25 |

10 Il Il Il Il Il Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

®o [’ &0 [

Optimization Strategy

[m/s]

2
Vy

+ o

10

F(V,V,) = min <\/a§x + a§y> Optimal Squint Angle
24°

2
O; Vs

®o [l
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Conclusions
_ — -

» Velocity vector estimation technique and validation using a Dual-channel Dual-platform SAR system

» Performance analysis has shown that:

= Considerable improvement in estimation accuracy is obtained through refocusing
= Optimal configuration with squint angle ¢, = 24° provides oy, oy, =2m/s

» On going & Future Work
» Refocusing provides residual Doppler rate measurement u,..: joint exploitation of multiple SAR observables

= Multi-channel solutions (for example: Single-platform dual-channel* case study: u,.s; and ¢ 7;)
or Multi-static multi-channel solutions (for example: Dual-platform dual-channel case study: u,.. and

¢ATI )

= Multi-static single-channel solutions (for example: Dual-platform single-channel case study: u,. only)
= MIMO solutions
= Multi-channel techniques distributed on multiple single-channel platforms

» Generalization to cope with more complex target motion models (e.g. accelerating targets)
* Investigating the impact of variations in platform geometry on the achievable performance
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