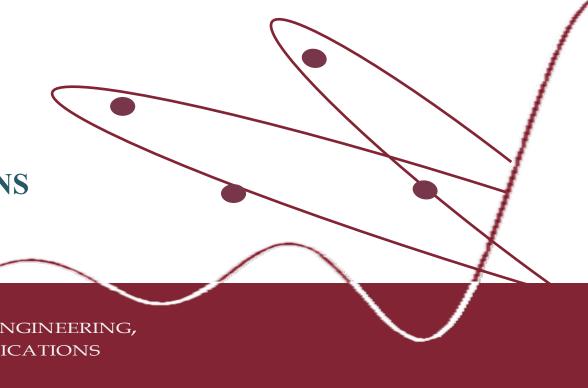
Multistatic Radar Workshop 2025

June, 19, 2025 - *Milan, Italy*


SURFACE TARGETS VELOCITY VECTOR
ESTIMATION EXPLOITING CONSTELLATIONS
OF SAR SYSTEMS

Ylenia D'Onofrio, Debora Pastina, Pierfrancesco Lombardo

Introduction & Objective of the work

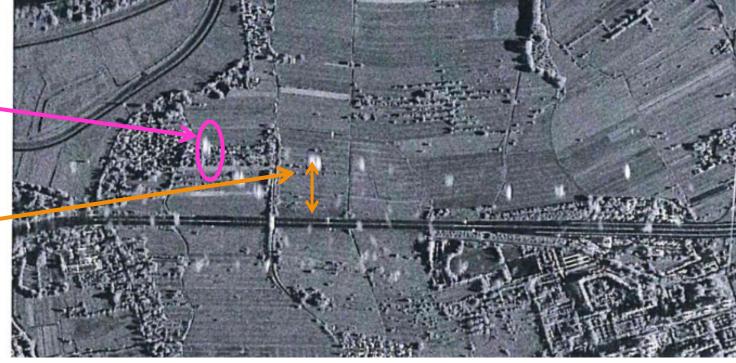
- > Synthetic Aperture Radar (SAR): all-weather and all-day image capabilities
 - Largely used for continuous monitoring of Surface moving target monitoring (civil and military applications)

➤ In general velocity estimation techniques exploit effects induced by uncompensated target motion in the SAR image focused with respect to the stationary scene

R.Klemm; U.Nickel; C.Gierull; P.Lombardo; H.Griffiths; W.Koch. "Novel radar techniques and applications Vol.1", 2017

Introduction & Objective of the work

- > Synthetic Aperture Radar (SAR): all-weather and all-day image capabilities
 - Largely used for continuous monitoring of Surface moving target monitoring (civil and military applications)
- In general velocity estimation techniques exploit effects induced by uncompensated target motion in the SAR image focused with respect to the stationary scene
- Along-track velocity → Defocusing effect



R.Klemm; U.Nickel; C.Gierull; P.Lombardo; H.Griffiths; W.Koch. "Novel radar techniques and applications Vol.1", 2017

Introduction & Objective of the work

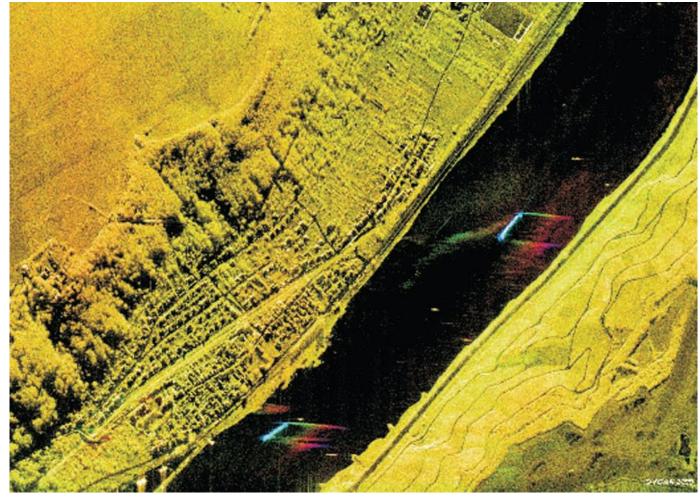
- > Synthetic Aperture Radar (SAR): all-weather and all-day image capabilities
 - Largely used for continuous monitoring of Surface moving target monitoring (civil and military applications)
- ➤ In general velocity estimation techniques exploit effects induced by uncompensated target motion in the SAR image focused with respect to the stationary scene
- Along-track velocity → Defocusing effect

• Radial velocity → Azimuth displacement

R.Klemm; U.Nickel; C.Gierull; P.Lombardo; H.Griffiths; W.Koch. "Novel radar techniques and applications Vol.1", 2017

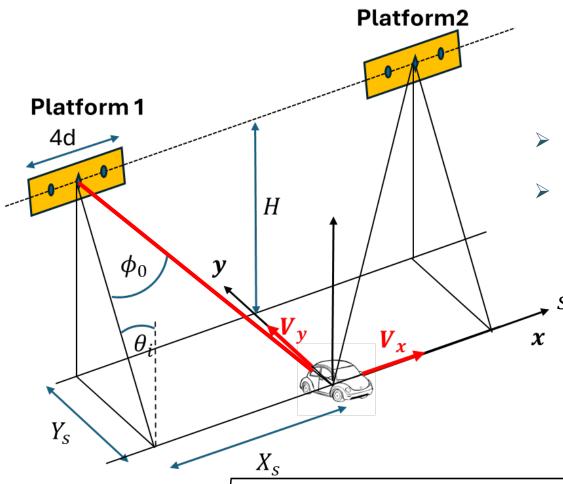
Objective of the work

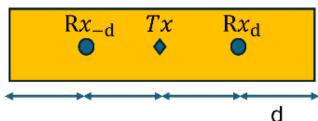
- Dual-channel single platform SAR
 - Availability of along-track interferometric phase:
 - Radial motion information
 - Traditionally used for ocean currents estimation
 - Joint exploitation with sub-aperture approaches or refocusing based approaches (i.e. residual doppler rate μ_{res})


- New Space Era → small satellite constellations (ICEYE, Capella Space, Umbra...):
- High resolution wide swath solutions
- Few examples of motion estimation techniques

Focus of the work

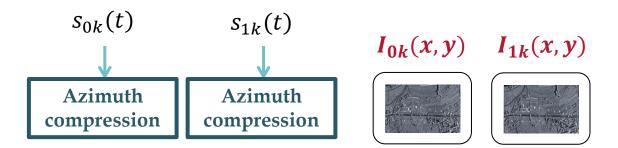
- Full velocity vector estimation method of surface movers detected in SAR images acquired by two SAR platforms, each one with dual antenna receiver
- joint exploitation of two along-track interferometric phase (ATI)

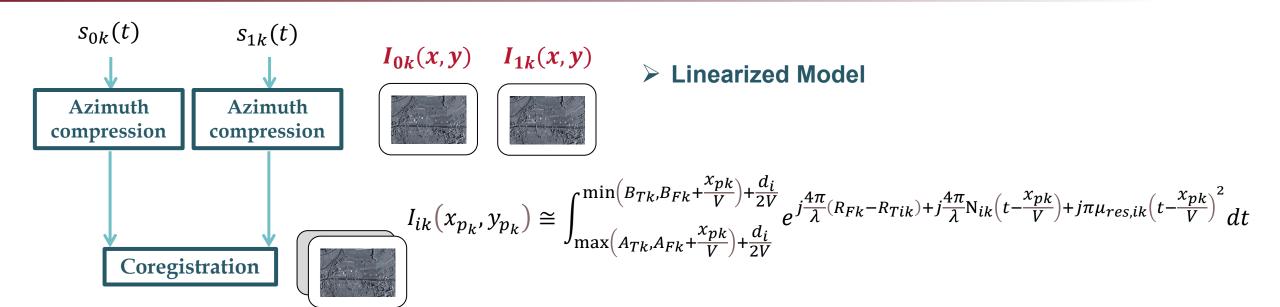

Outline

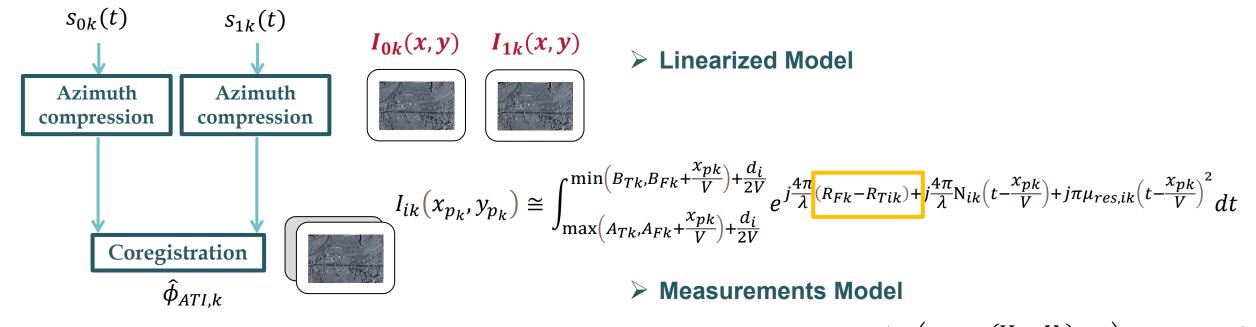

- Interferometric SAR geometry and signal model
- Discussion of the estimation method
- Velocity vector estimation performance
- Theoretical analysis
- Optimization Strategy
- Conclusions

A. Budillon, C. H. Gierull, V. Pascazio and G. Schirinzi, "Along-Track Interferometric SAR Systems for Ground-Moving Target Indication: Achievements, Potentials, and Outlook," in IEEE Geoscience and Remote Sensing Magazine, vol. 8, no. 2, pp. 46-63, June 2020

Interferometric SAR geometry and signal model

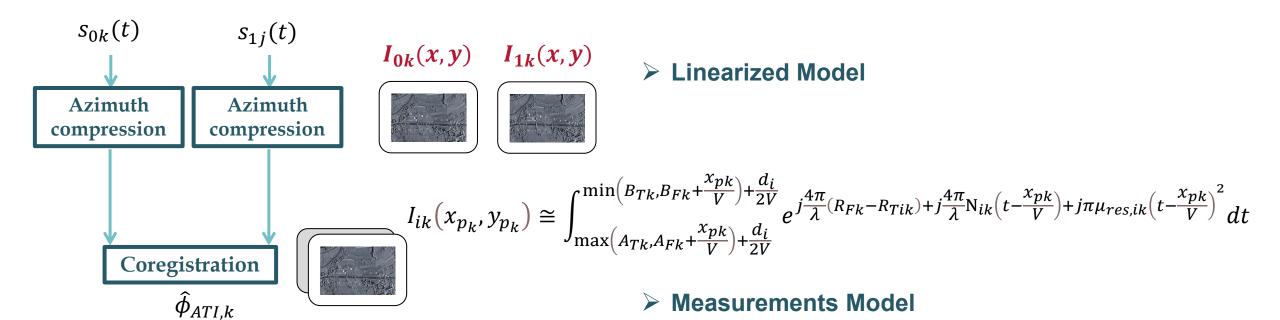

- Moving Target already detected
- **Range compressed signal** by the i-th receiving channel (i = 0,1) in slow time domain t, from k-platform

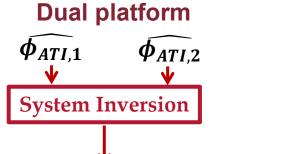

$$s_{ik}(t) = rect_{B_{Tk} - A_{Tk}} \left(t - \frac{B_{Tk} + A_{Tk}}{2} \right) e^{-\frac{j2\pi}{\lambda} \phi_k(X_{Sk}, Y_S, H, V_X, V_Y, t)}$$


- B_{Tk} , A_{Tk} : Temporal extremes of Target visibility window
- Two-way bistatic range distance in the phase term:

$$\phi_k = \sqrt{H^2 + (X_{sk} + (V - V_x)t)^2 + (Y_s - V_y t)^2} + \sqrt{H^2 + (X_{sk} + d_i + (V - V_x)t)^2 + (Y_s - V_y t)^2}$$

$$s_{0k}(t)$$
 $s_{1k}(t)$





$$| \phi_{ATI,k} | \simeq \angle I_{0k} I_{1k}^* \cong \frac{4\pi}{\lambda} (R_{T1k} - R_{T0k}) \cong \frac{4\pi}{\lambda V} d \left(\frac{-\left(X_{sk} + \frac{(V - V_x) x_{pk}}{V} \right) V}{R_{F_K}} + V_{radial} \right)$$

$$V_{radial} = \frac{-V_y \left(Y_s - V_y \frac{x_{pk}}{V} \right) + (V - V_x) (X_{sk} + (V - V_x) \frac{x_{pk}}{V})}{R_{F_k}}$$

$$\phi_{ATI,k} \simeq \angle I_{0k} I_{1k}^* \cong \frac{4\pi}{\lambda} (R_{T1k} - R_{T0k}) \cong \frac{4\pi}{\lambda V} d \left(\frac{-\left(X_{sk} + \frac{(V - V_x) x_{pk}}{V} \right) V}{R_{F_K}} + V_{radial} \right)$$

$$V_{radial} = \frac{-V_y \left(Y_s - V_y \frac{x_{pk}}{V} \right) + (V - V_x) (X_{sk} + (V - V_x) \frac{x_{pk}}{V})}{R_{F_K}}$$

Performance analysis

- Complex SAR image amplitude corrupted by zero mean additive white gaussian disturbance
- \succ Small error approximation for estimation accuracies $\sigma_{\delta V_x}$ and $\sigma_{\delta V_y}$
 - \rightarrow measurements errors $\delta\phi_{ATI1}$, $\delta\phi_{ATI2}$ mapped in target velocity estimation errors δV_x , δV_y :

$$\begin{bmatrix} \boldsymbol{\sigma_{\delta V_x}^2} & 0 \\ 0 & \boldsymbol{\sigma_{\delta V_y}^2} \end{bmatrix} = Z^{-1} \begin{bmatrix} \boldsymbol{\sigma_{\phi_{ATI1}}^2} & 0 \\ 0 & \boldsymbol{\sigma_{\phi_{ATI2}}^2} \end{bmatrix} Z^{-1}^{T} \qquad Z = \begin{bmatrix} \frac{\partial \phi_{ATI1}}{\partial (\delta V_x)} & \frac{\partial \phi_{ATI1}}{\partial (\delta V_y)} \\ \frac{\partial \phi_{ATI2}}{\partial (\delta V_x)} & \frac{\partial \phi_{ATI2}}{\partial (\delta V_y)} \end{bmatrix}$$

Measurements variances

$$\sigma_{\phi k}^{2} *= \int_{-\pi}^{\pi} \frac{\left(\phi' - \phi_{Meanj}\right)^{2} \left(1 - |\rho_{ck}|^{2}\right)}{2\pi \left(1 - \left(|\rho_{ck}| \cos(\phi' - \phi_{ATI,k})\right)^{2}\right)} \left(1 + \frac{|\rho_{ck}| \cos(\phi' - \phi_{ATI,k}) \operatorname{arccos}(-|\rho_{ck}| \cos(\phi' - \phi_{ATI,k})))}{\sqrt{1 - \left(|\rho_{ck}| \cos(\phi' - \phi_{ATI,k})\right)^{2}}}\right) d\phi'$$

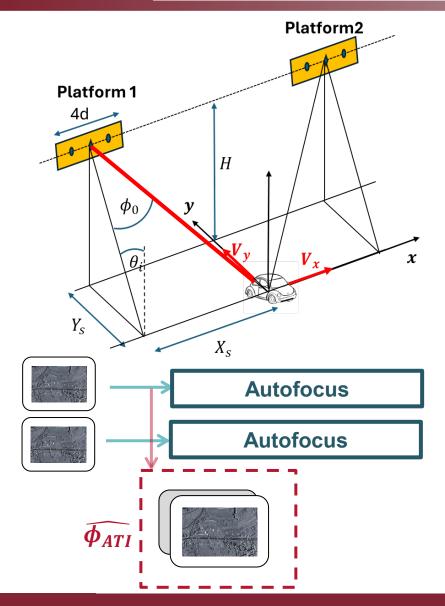
$$\rho_{ck} = \frac{1}{1 + \frac{1}{SNR_{k}}}$$

* Li, Q. He, "On the Ratio of Two Correlated Complex Gaussian Random Variables," in IEEE CL, vol.23, no. 12, pp. 2172-2176, Dec. 2019

Performance analysis

- Complex SAR image amplitude corrupted by zero mean additive white gaussian disturbance
- \succ Small error approximation for estimation accuracies $\sigma_{\delta V_x}$ and $\sigma_{\delta V_y}$
 - \rightarrow measurements errors $\delta\phi_{ATI1}$, $\delta\phi_{ATI2}$ mapped in target velocity estimation errors δV_x , δV_y :

$$\begin{bmatrix} \boldsymbol{\sigma_{\delta V_x}^2} & 0 \\ 0 & \boldsymbol{\sigma_{\delta V_y}^2} \end{bmatrix} = Z^{-1} \begin{bmatrix} \boldsymbol{\sigma_{\phi_{ATI1}}^2} & 0 \\ 0 & \boldsymbol{\sigma_{\phi_{ATI2}}^2} \end{bmatrix} Z^{-1}^{T} \qquad Z = \begin{bmatrix} \frac{\partial \phi_{ATI1}}{\partial (\delta V_x)} & \frac{\partial \phi_{ATI1}}{\partial (\delta V_y)} \\ \frac{\partial \phi_{ATI2}}{\partial (\delta V_x)} & \frac{\partial \phi_{ATI2}}{\partial (\delta V_y)} \end{bmatrix}$$


Measurements variances

$$\sigma_{\phi k}^{2} *= \int_{-\pi}^{\pi} \frac{\left(\phi' - \phi_{Meanj}\right)^{2} \left(1 - |\rho_{ck}|^{2}\right)}{2\pi \left(1 - \left(|\rho_{ck}| \cos(\phi' - \phi_{ATI,k})\right)^{2}\right)} \left(1 + \frac{|\rho_{ck}| \cos(\phi' - \phi_{ATI,k}) \operatorname{arccos}(-|\rho_{ck}| \cos(\phi' - \phi_{ATI,k})))}{\sqrt{1 - \left(|\rho_{ck}| \cos(\phi' - \phi_{ATI,k})\right)^{2}}}\right) d\phi'$$

$$\rho_{ck} = \frac{1}{1 + \frac{1}{SNR_{k}}}$$
 Signal-to-Noise Ratio

* Li, Q. He, "On the Ratio of Two Correlated Complex Gaussian Random Variables," in IEEE CL, vol.23, no. 12, pp. 2172-2176, Dec. 2019

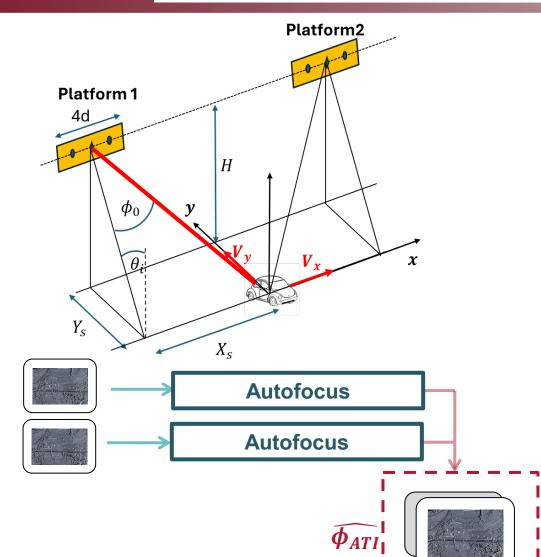
Case study

> Common LEO satellite parameters

Н	570000 m	d	6/4 m
Y_{s}	265795,36 m	λ	0,03 m
$ heta_i$	25°	V	7,5 km/s

> Squint Angle

• High squint geometry $\phi_0 = 26^{\circ}$


Signal-to-Noise Ratio (SNR)

• Interferometric phase before autofocus $SNR = SNR(V_x, V_y)$,

> Moving Target motion

Slant range velocity $(V_y sin\theta_i)$ and along-track velocity (V_x) ranging from -20 m/s to 20 m/s

Case study

> Common LEO satellite parameters

Н	570000 m	d	6/4 m
Y_{s}	265795,36 m	λ	0,03 m
$ heta_i$	25°	V	7,5 km/s

> Squint Angle

• High squint geometry $\phi_0 = 26^{\circ}$

Signal-to-Noise Ratio (SNR)

- Interferometric phase before autofocus $SNR = SNR(V_x, V_y)$,
- Interferometric phase after autofocus $SNR = SNR_0$

$$SNR_0 = SNR(0,0) = [100,1000] \cos \phi_0^4$$

→ Moving Target motion

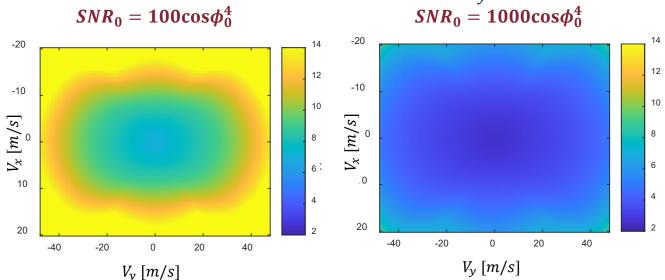
Slant range velocity $(V_y sin\theta_i)$ and along-track velocity (V_x) ranging from -20 m/s to 20 m/s

Performance assessment results

 $SNR_0 = 100\cos\phi_0^4$

☐ Interferometric phase before autofocus

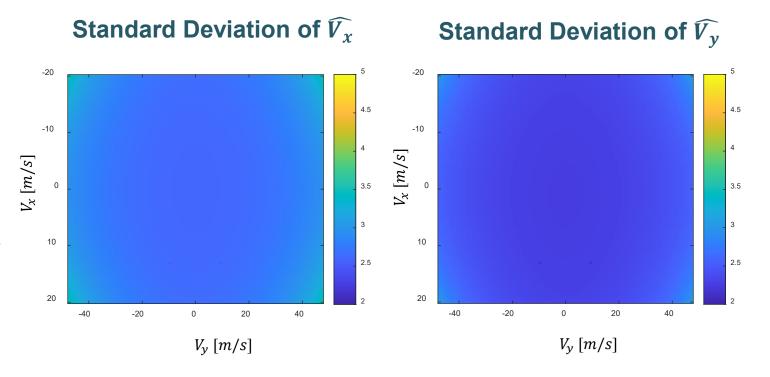
$$SNR_k = SNR_k(V_x, V_y) = SNR_0 \frac{\left|I_{ik}(x_{pk}, y_{pk})\right|^2}{(B_{Fk} - A_{Fk})^2}$$


➤ The estimation error is affected by the SNR worsening due to **defocusing effect**

Standard Deviation of \widehat{V}_x

 $SNR_0 = 1000\cos\phi_0^4$

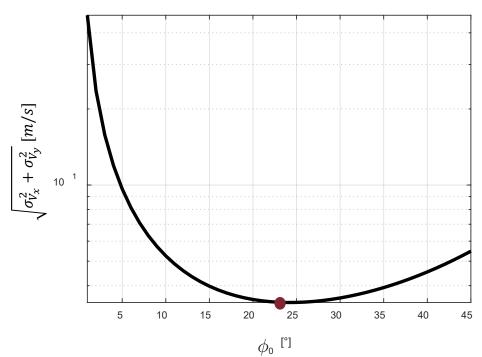
Standard Deviation of $\widehat{V_{y}}$

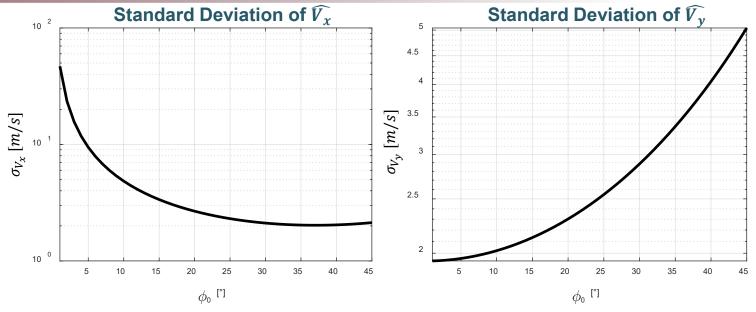

- As the SNR increases, a general improvement in performance can be observed
- Theoretical analysis validation theoretical results and Monte Carlo simulations largely in agreement

Performance assessment results

☐ Interferometric phase after Autofocus

$$SNR = SNR_0 = 1000cos^4\phi_0$$


- Maximum SNR for all motion conditions
 - general improvement at high velocities;
 - Estimation variances independent of velocity > searching for optimum configuration



- \triangleright Best performance: Standard Deviation of V_x and $V_v \ge 2$ m/s
- Theoretical analysis validation theoretical results and Monte Carlo simulations largely in agreement

Optimization of the two-satellite constellation

- Increasing Squint angle
- Smaller SNR due to range attenuation
- Higher sensitivity to along-track velocity
- Worse cross-track estimation capability

Optimization Strategy

$$F(V_x, V_y) = \min\left(\sqrt{\sigma_{V_x}^2 + \sigma_{V_y}^2}\right) \longrightarrow$$
 Optimal Squint Angle 24°

Conclusions

- Velocity vector estimation technique and validation using a Dual-channel Dual-platform SAR system
- Performance analysis has shown that:
 - Considerable improvement in estimation accuracy is obtained through refocusing
 - Optimal configuration with squint angle $\phi_0=24^\circ$ provides σ_{V_χ} , $\sigma_{V_\chi}\cong 2~m/s$
- On going & Future Work
- Refocusing provides residual Doppler rate measurement μ_{res} : joint exploitation of multiple SAR observables
 - Multi-channel solutions (for example: Single-platform dual-channel* case study: μ_{res} and ϕ_{ATI}) or Multi-static multi-channel solutions (for example: Dual-platform dual-channel case study: μ_{res} and ϕ_{ATI})
 - Multi-static single-channel solutions (for example: Dual-platform single-channel case study: μ_{res} only)
 - MIMO solutions
 - Multi-channel techniques distributed on multiple single-channel platforms
- Generalization to cope with more complex target motion models (e.g. accelerating targets)
- Investigating the impact of variations in platform geometry on the achievable performance

*Y. D'Onofrio, D. Pastina, P. Lombardo, "Target Velocity Vector Estimation from Single Platform Dual-Channel Squinted Synthetic Aperture Radar", 2025 International Radar Symposium, Hamburg (Germany).