Tropospheric Tomography Measurement Using Spaceborne Multi-static SAR

Yuanhao Li

Beijing Institute of Technology

June 2025, Milan Italy

Outline

Research Background Method Validation and Results Conclusion

Spaceborne SAR: high spatial resolution

□Satellite-deployed radar transmits signal to acquire high-resolution

2-D image (range-azimuth)

 Achieving all-day/all-weather、wide-area/high spatial resolution microwave imaging
 SAR image

Spaceborne SAR: troposphere effect

□Its signal propagates through troposphere to observe the Earth's surface, and tropospheric signal component is imposed

Differential Interferometric SAR (D-InSAR)

□Repeatedly observe the same area at different times, and use interferometric phase to invert surface deformation
 □Tropospheric phase is considered as an error term in this case

Differential Interferometric SAR (D-InSAR)

□When Surface deformation is negligible, tropospheric information can be measured

□Interferometric phase change mainly derives from differential tropospheric refractivity

Drawback: dimension deficiency

Due to limitation of SAR imaging, vertical-dimension information is lost

"... accurate prediction of numerical weather forecast models critically depends on the 3-D structure of atmospheric elements such as humidity...."

(JGR atmosphere, 2018)

Only integrated refractivity is measured, analysis and prediction error is large

Drawback: dimension deficiency

- □Integrated refractivity → Only PWV, missing 3-D structure
- Only assimilating PWV to NWP models is insufficient **Satellite**

Outline

Research Background Method Validation and Results Conclusion

Method: concept

□ Master-satellite transmits, multiple spaceborne SAR (Multi-angle)

Signal-level processing acquires multi-angle SAR/D-InSAR images

♦ Information-level processing enables 3-D tropospheric parameters

Y. Li, C. Liu, et al., "Differential Tropospheric Tomography using Spaceborne Simultaneous Multi-angle D-InSAR: Method, Optimization, and Performance Analysis," *IEEE Trans. Geosci. Remote Sens.*, vol. 62, 2024.

C. Hu, Y. Li, et al., "Distributed Spaceborne SAR: A Review of Systems, Applications, and Road Ahead", IEEE Geosci. Remote Sens. Mag., 2025.

Method: model

- □Multi-angle collaborative measurement (equivalent phase centers) to calculate the 3-D tropospheric refractivity
 - Observation matrix (A): multi-angle LOS paths
 - Establish interferometric phase refractivity observation equation
 - **♦** Inverse the equation to estimate 3-D tropospheric refractivity

Method: observation equation

3-D tropospheric refractivity: help to inverse additional tropospheric parameters (water vapor, cloud, etc.)

Research difficulties

Problems & Challenges The observation angles of satellites are limited (sparse observation)

3-D high resolution refractivity

Research difficulties

Problems & Challenges

The observation angles of satellites are limited (sparse observation)

3-D high resolution refractivity

Differential interferometry, phase ambiguity at two moments

Accurate restoration of 3-Dabsolute refractivity

Challenge ①

Due to sparse observations, equation is underdetermined The inverted 3-D refractivity is low accuracy

Essential question

Configuration optimization + 3-D refractivity adaptive sparse reconstruction

Challenge ①

Due to sparse observations, equation is underdetermined The inverted 3-D refractivity is low accuracy

Method ①

Intelligent design method for multi-static SAR configuration based on multi-objective collaborative optimization strategy

Performance index system

Multi-parameter joint optimization based on NSGA-II

Y. Li, C. Liu, et al., "Differential Tropospheric Tomography using Spaceborne Simultaneous Multi-angle D-InSAR: Method, Optimization, **16** and Performance Analysis," *IEEE Trans. Geosci. Remote Sens.*, vol. 62, 2024.

Due to sparse observations, equation is underdetermined The inverted 3-D refractivity is low accuracy

Method ②

3-D refractivity reconstruction based on precise ray-tracing and component screening dimensionality reduction

Multi-angle ray-tracing: Reduce the scale of the parameters to be estimated

Singular value screening: Truncate near-zero singular values, improve the condition number of matrix A

Y. Li, C. Liu, et al., "Differential Tropospheric Tomography using Spaceborne Simultaneous Multi-angle D-InSAR: Method, Optimization, 17 and Performance Analysis," *IEEE Trans. Geosci. Remote Sens.*, vol. 62, 2024.

Challenge ②

D-InSAR can only obtain the relative variation, there is ambiguity in the refractivity measurement

Essential question

Restoration of tropospheric absolute refractivity

Challenge 2

D-InSAR can only obtain the relative variation, there is ambiguity in the refractivity measurement

Method

Absolute quantity recovery method based on prior coarse meteorological information and time series processing

Prior rough meteorological information:

Provide ambiguous information

Time series processing: Smooth noise reduction, improve accuracy

C. Liu, Y. Li, et al., "Single-Epoch Tropospheric Refractivity Tomography using Distributed Spaceborne D-InSAR," 2024 IEEE International 9 Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 2024, pp. 1-6, doi: 10.1109/ICSIDP62679.2024.10868406.

Outline

Research Background Method 3 **Validation and Results Conclusion**

Simulation model

□ Dutch Atmospheric Large Eddy Simulation(DALES)

- Providing high-precision dynamics models, supporting atmospheric simulations in complex scenarios
- Capable of outputting high-precision, multi-parameters atmospheric simulation parameters under different conditions

Result: 3-D relative tropospheric refractivity

□Simulation condition: 10km×10km×10km, under three weather conditions

□Configuration optimization significantly enhances 3-D refractivity measurement performance, particularly in the lower tropospheric layers with high water vapor concentration

Result: 3-D relative tropospheric refractivity

□Accuracy analysis of relative refractivity (△N) inversion

- Resolution: 400 m (≤4km), 1-2 km (>4km)
- ♦ Retrieval accuracy: 4–12, with clear-sky conditions outperforming rainy conditions; optimized configurations can achieve an enhancement of 35–64%

Beforeoptimization

Root Mean Square Error (RMSE) of differential refractivity inversion results

Configuration optimization	Clear sky ~ Clear sky	Clear sky ~ Cloudy	Clear sky ~ Moderate rain
Before	11.949	14.584	17.709
After	4.415	8.864	11.499

Afteroptimization

Result: 3-D absolute tropospheric refractivity

□Accuracy analysis of absolute refractivity (N) inversion

- RMSE is less than 10
- The accuracy of the refractivity correlates with the condition of atmospheric spatial variation, and degrades when spatial variation becomes severe

□SUPERVIEW NEO-2 (launched in November 2024)

- **♦ X-band**, <1m resolution imaging
- **♦** Tandem formation for topographic mapping
- ♦ 16-day revisit cycle for D-InSAR

SUPERVIEW NEO-2 observation configuration

High-resolution SAR image

Topographic mapping

□In-orbit data validation experiment:

- Along-track long baseline of 40km between two satellites, singletransmitting-dual-receiving, dual-angle simultaneous observation
- Scene: Bayinguoleng, Xinjiang, China
- Acquisition: 4 December 2024 and 20 December 2024

observation configuration

target scene (100km×20km)

□In-orbit data validation experiment:

Selected area: 5km×10km (including radiosonde)

Optical SAR image images

Optical image of selected area

Original aera

SAR image of selected area

□Inversion grid: horizontal 625×1250m, vertical 1.5km
 □RMSE of the inverted relative refractivity (△N) is less than 7 (compared with radiosonde, GFS and ECMWF)

□Absolute refractivity inversion and accuracy analysis

- Use ECMWF as the prior coarse meteorological data
- The RMSE of the inverted absolute refractivity (N) is 5-10 (compared with GFS and radiosonde)

Outline

Research Background Method Validation and Results Conclusion

Conclusion

Current tropospheric atmospheric measurement techniques remain insufficient in spatial resolution

Tropospheric atmospheric multi-parameter measurement using distributed spaceborne multi-angle D-InSAR

3-D accurate atmospheric measurement under sparse observation condition & absolute parameter inversion

Inversion

Relative refractivity Absolute refractivity Inversion

In-orbit data validation

Enhances the accuracy of meteorological prediction

Addressing scientific challenges in atmospheric research