Bistatic and tomographic SAR imaging: current status and latest experiments with the compact Gamma L-band SAR systems

Othmar Frey ^{1,2}, Charles Werner ¹, Rafael Caduff ¹, Silvan Leinss ¹, Tobias Batt ¹

¹ Gamma Remote Sensing AG, ² ETH Zurich, Switzerland

selected SAR campaigns in collaboration with:

T. Sadeghi Chorsi ³, R. Van Alphen ³, T. Dixon ³,
A. LeWinter ⁴, D. L. Filiano ⁴, C. J. Wagner ⁴, E. Deeb ⁴

University of South Florida, USA,
 Cold Regions Research and Engineering Laboratory (CRREL), Hanover NH, USA

Our history towards demonstration of UAV-borne SAR imaging with the Gamma SAR Systems at L-band (and S-band)

- 1. step: SAR imaging from agile platforms / UAV
 - → time-domain back-projection focusing (C/CUDA → GPU) using a digital elevation model
- 2. step: repeat-pass D-InSAR from car / UAV

3. step: repeat-pass SAR tomography from quad-copter UAV at L-band

• 4. step: work in progress: bistatic imaging (and eventually bistatic interferometry/tomography)

Frey, O., Magnard, C., Rüegg, M., Meier, E.: "Focusing of Airborne Synthetic Aperture Radar Data from Highly Nonlinear Flight Tracks".

IEEE Trans. Geosci. Remote Sens., 47(6):1844-1858, June 2009.

Step 1&2: First demonstrations of UAV-borne DInSAR at L-band and

car-borne DInSAR at L-/S-/Ku-band using Gamma SAR systems

2023

1-day (2023-10-16 to 17) interferometric phase & coherence

Car-borne SAR

• L-band

• Ku-band

2020

GAMMA REMOTE SENSING

Step 1&2: First demonstrations of UAV-borne DInSAR at L-band and

car-borne DInSAR at L-/S-/Ku-band using Gamma SAR systems

2023

S-Band ~ 1d 16h: 20240820T164209_20240822T082704

Quad-copter UAV-borne repeat-pass SAR interferometry at L-band:

- Gamma L-band SAR (GLSAR) with re-designed, more compact and light-weight form factor
- Down-sized L-band SAR with:
 - total payload : < 7 kg
 - for quadcopter drones
 - and other platforms (airborne, HAPS w/ modification...)

Quad-copter UAV-borne repeat-pass SAR interferometry at L-band:

- Gamma L-band SAR (GLSAR) with re-designed, more compact and light-weight form factor
- Down-sized L-band SAR with:
 - total payload : < 7 kg
 - for quadcopter drones
 - and other platforms ...

HGUIDE n580 NAVIGATION PERFORMANCE			
POSITION ACCURACY		HEADING ACCURACY ¹	PITCH/ROLL ACCURACY
Horizontal (m, 1ơ)	Vertical (m, 1σ)	(°, 1σ)	(°, 1σ)
0.01 RTK 0.6 SBAS	0.025 RTK 0.6 SBAS	0.05	0.015

Quad-copter UAV-borne repeat-pass SAR interferometry at L-band: Gamma L-band SAR on Freefly Alta-X quad-copter UAV

L-band SAR image: 200MHz bandwidth, res. < 1m

Quad-copter UAV-borne repeat-pass SAR interferometry at L-band, zero-baseline (nominally): Gamma L-band SAR on Freefly Alta X, 200Mhz BW, max SA: ~ 200m

UAV-borne S-Band SAR imaging and interferometry

Gamma S-band SAR Quad-Pol Pauli-Image

UAV-borne SAR imaging and interferometry

Zoomed view: phase (5-min repeat-pass)

UAV-borne SAR imaging and interferometry

Zoomed view: coherence (5-min repeat-pass)

Quad-copter UAV-borne repeat-pass SAR tomography at L-band

- "Opportunity" SAR tomography data set acquired on the next day after very first repeat-pass test flights.
- Opposite side across the river includes trees in a park area + buildings
- Originally more than 30 tracks acquired.
- Only 17 tracks with valid navigation data due to a power outage when hot-swapping UAV batteries.

GAMMA REMOTE SENSING

Quad-copter UAV-borne repeat-pass SAR tomography at L-band

- Some of the 17 tracks are redundant.
- Potential reason: drone pilot manually adjusted height in flight planning software.

Quad-copter UAV-borne repeat-pass SAR tomography at L-band

- 10 tracks after removing redundant tracks.
- Fairly regular baselines.
- But: only 7m of total baseline.

20240522T184926

20240522T185020

20240522T185209

20240522T185312

20240522T185410

20240522T185457

20240522T185848

20240522T185932

20240522T190108

20240522T190208

Vertical profile image obtained from SAR tomography (10 tracks, 7m total baseline)

- Profile of 3-D structures is reconstructed in vertical transect.
- Imaging is not optimal due to given acquisition geometry:
 - Sidelobes due to
 - limited number of tracks
 - + non-uniform tomographic sampling (tracks).
- Limited tomographic resolution particularly towards far range.

 GAMMA REMOTE SENSING

UPDATED

Monostatjc image of transmitter

(Preliminary) bistatic SAR image,

- no synchronization & phase calibration, yet
- just GNSS/PPSdisciplined oscillators
- → image is
 - shifted
 - defocused

Bistatic image after compensation of a timing offset between the 2 GPSDO:

→ Compensated time shift: ca. 35m equiv. range

No compensation of phase drifts along Azimuth (, yet).

Work in progress...

Summary / Status

1. UAV-based **SAR imaging** demonstrated for L-band (and car-based SAR imaging for L-/S-/Ku-band)

- 2. UAV-based **repeat-pass SAR interferometry** demonstrated for L-band (and car-based DInSAR for L-/S-/Ku-band)
- 3. UAV-based repeat-pass SAR tomography works ...
 - ... but still *needs work*
 - + new experimental data set with improved
 - spatial sampling (calm weather conditions)
 - tomo. resolution (more tracks/baselines)

to demonstrate the desired imaging capability for forest tomography.

4. UAV-based **bistatic imaging**:

work in progress: first campaign data available since a few weeks, synchronization, further analysis & refined processing are on the way

Thank you!

frey@gamma-rs.ch

https://www.gamma-rs.ch

