# High-resolution 3D imaging technique in forward scattering bistatic configurations

L. Ferro-Famil<sup>1,2</sup>, M. Wu<sup>3</sup>,

- <sup>1</sup> ISAE-Supaero, U. Toulouse, France
- <sup>2</sup> CESBIO, U. Toulouse, France
- <sup>3</sup> FI-NDT, Nantes, France

June 20, 2025

## Monostatic Back-Scattering vs. Bistatic Forward-Scattering

#### **BSC** imaging



- Adapted to 2-D ground mapping
- Monostatic Tx and Rx chains
  - may share devices
  - easy synchronization
- Variety of scattering mechanisms

#### **FSC** imaging



- Intrinsic z–mapping:  $\delta d \rightarrow \delta z$
- Filters out DB scattering
- Emphasizes specular scattering
- Significantly enhanced SNR

# Monostatic Back-Scattering vs. Bistatic forward-scattering



## Bistatic FSC tomography using an additional aperture



# Bistatic FSC tomography: GB-SAR experiments

Artificial volume



#### Snow pack



#### Snow covered sea-ice

## Roadway defects







## Low complexity FSC imaging: Constant Offset Sliding Bistatic mode



- Minimal complexity configuration: 1 Tx & 1 Rx
- Opposite side sliding system:
  - angular diversity through horizontal aperture
  - $\triangleright$  provides ground-range resolution (vertical ones depends on  $B_f$ )
  - relaxes sampling constraint

#### BSC-tomo, FSC-tomo and CosBiz modes



■ Cosbiz images have a quasi rectangular spectrum (orthogonal sidelobes)

## Detection of a vertical gap



- Nadir-looking and COSBiz configurations have similar performance
- BSC imaging: speckle + dominating DB scattering patterns

## Detection of a horizontal gap



- Nadir-looking configuration fails
- FSC: DB mechanism prevents forward scattering -> gap detection

## Wideband High-Resolution Cosbiz focusing



■ Classical spatial filtering in BSC mode:

$$s(z,x) \rightarrow S(k_z,x) \rightarrow \mathbf{R} = \frac{1}{I} \sum_{l} \mathbf{s}(x_l) \mathbf{s}^H(x_l) = \sum_{t} \mathbf{R}_t$$

CosBiz: coherent scattering (no speckle pattern)

$$\mathbf{s}(x_l) \propto \mathbf{s}(x_0) = \sum_t \mathbf{s}_t 
ightarrow \mathsf{rank}(\mathbf{R}) = 1$$

Non-separable target sub-spaces!

## HR Cosbiz focusing in elevation: covariance estimation

■ A solution: spectral smoothing (exploits phase diversity)



■ Decorrelation - Fourier resolution loss compromise



#### HR CosBiz imaging results: horizontal crack

#### ■ Original resolution



#### ■ High resolution



## HR imaging results: vertical crack

#### Original resolution



#### ■ High resolution



#### **Conclusions**

■ Very low complexity elevation-range FSC imaging solution:

CosBiz

■ Monostatic vs. highly bistatic configuration:

radically different scattering mechanisms

■ High-Resolution processing adapted to particular statistical behavior