

Liberté Égalité Fraternité

ONERA

THE FRENCH AEROSPACE LAB

www.onera.fr

ONERA's airborne bi-static systems, experiments, calibration hardware, and synchronization

Hugo Keryhuel

Dept. Of Electromagnetism & radar, ONERA

Summary

- Context
- Latest campaign overview
- Synchronization principle used
- Active transponder

Context – campaigns hindsight since 2003

Context – campaigns hindsight since 2003

First operational bi static campaign 2023 : ONERA – 700MHz @X band

Tx/Rx

Rx direct and backscatter

Up to 5000 SAR images produced:

- at least 1km² each with 20 cm resolution
- Geocoded
- Radiometry and geometric accuracy provided
- Resolution, PSLR, noise level within requirement

Clock synchronization capabilities

5° bistatisme

40° bistatisme

Phase 1: Regulation OCXO over GPS (in between measurements)

- 10MHz OCXO board <u>always master</u>
- Trigger generated by GPS board (common board clock 1Hz)
- 10 MHz OCXO frequency regulation over GPS
- servitude phase for the 10MHz OCXO over the 10MHz GPS (through PPS)
- gap between system clock and GPS clock is measured

Phase 2: Measure

- Starting acquisition
- 10MHz OCXO board <u>always master</u>
- Time offset between the system and the GPS is measured.
- Common clock PPS = 1Hz corrected at the start of the acquisition (take into account the offset between the system and the GPS)

≈ drift < 1µs for 600 sec

Requirements

- Easy to transport
- Easy to deploy
- · Weather condition resilient
- Tracking capabilities
- Trajectory prediction algorithm
- Control software

Requirements

- Easy to transport
- Easy to deploy
- Weather condition resilient
- Tracking capabilities
- Trajectory prediction algorithm
- Control software

