

99942 Apophis - 2029

Caltech

The Caltech Mission to Apophis

Approach & Initial Characterization

Feb 2029

Earth Closest Approach (ECA)

Apr 2029

Post-ECA Characterization May 2029

> Autonomous Formation Flying Experiment

Approach Insertion Burn

A Mothercraft

Camera

2 CubSats (12U)

- Bistatic radar
- Radio science (ISL)
- NavCam

Launch

Jan-Feb 2028

JuRa / HERA heritage

	JuRa
carrier	60 MHz
signal	BPSK
BW	20 MHz nominal 30 MHz extended
Resolution	10 – 15 m (1D)
Polarization	Full linear
Tx power	5 W
$NE\sigma_0$	Better than -50 dB.m²/m²

Electronics 1U / 1kg

2 cross dipoles

4 deployable booms

1.26 m & 65 g each

3D Tomography - Internal structure

Bring out the aggregate structure Identify internal structure: layers, voids, sub-aggregate Identify large scale structure / variation of density

Characterize the smaller scales from sigma null map its spatial variation

Average permittivity and its spatial variations

- To better constraint physical modeling of tidal effect and stability conditions
- To improve mechanics of granular material under low gravity
- To prepare any interaction with a spacecraft

Alternation of 3 Radar modes

Absolute average permittivity measurement Projection tomography (low scattering)

Synchronization from maincraft (ISL) SNR

Scattering tomography
Lamba/2

Synchro from direct path Blinding from direct path

Ewald sphere coverage

Operation at low altitude :

- No plan wave approximation
- k differs for different points in the asteroid
- Final image: the same resolution but for different area of the Ewald sphere

Eval sphere plot of the orbit for areas of Apophis

Orbits of the 2 CubeSats in the body fixed frame

Imaging of the internal structure of an asteroid analogue from labmeasurements

A. Dufaure, C. Eyraud et al 2024, L. Sorsa et al 2022, 2023

- Analogue of an asteroid
- Microwave analogy

Imaging of the internal structure of an asteroid analogue from labmeasurements

A. Dufaure, C. Eyraud et al 2024, L. Sorsa et al 2022, 2023

- Analogue of an asteroid
- Microwave analogy
- Measurements in a controlled environnement

Science objectives

- Secondary objectives are more prospective:
 - to support gravity field characterization and dynamical state determination
 - ⇒ radar ranging and interferometry
 - to evaluate the feasibility of bistatic radar experiment in transmission
 - ⇒ between spacecraft and LOFAR ground based facility

