Multistatic Radar Workshop 2025

SnowCAT: an Innovative MIMO SAR Mission for Snow Characterization by SAR Tomography

Francesco Banda, aresys

Stefano Tebaldini, PoliMi

Laurent Ferro-Famil, CESBIO

Thomas Nagler, ENVEO

Melody Sandells, Northumbria University

Jack Landy, UiT

Othmar Frey, Gamma Remote Sensing

Wolfgang Dierking, AWI

Leonardo Carrer, aresys

Antonio Giordano, aresys

Davide Giudici, aresys

Luca Mantuano, PoliMi

Motivation

- Seasonal snow cover affects the global climate system and freshwater availability to billions of people
 - recognized as an Essential Climate Variable by WMO
 - included as one of ESA's Living Planet Challenges
- Accurate assessment of Snow Depth (SD) and Snow Water Equivalent (SWE) is still challenging at operational level, especially in mountain regions with complex topography
 - ☐ high-res optical stereo imagery
 - ➤ SD retrieval by DEM differencing, accuracy about 50/70 cm over few meters, clouds hinder systematic coverage
 - ☐ altimeters are limited by spatial sampling (LiDAR) and coarse resolution (RADAR)
 - ☐ SWE retrieval from SAR radiometry & polarimetry assumes specific snowpack models
 - > accuracy about few cm/1 m in controlled conditions, problematic estimation in heterogeneous areas
 - □ DInSAR-based retrieval allows direct measurement of SWE variations across two dates (for dry snow conditions with highly transparent snowpack)
 - > accuracy reported to be up to few cm, strongly depends on local coherence and compensation of topographic and atmospheric delays
- There is currently no EO mission specifically dedicated to monitor snow mass in mountain regions

Retrieval of physical snow parameters using TomoSAR

TomoSAR acquires SAR data along *multiple trajectories* and provides a **3D representation** of RADAR backscatter. It is a consolidated technology for remote sensing of forested areas using P- and L-Band SAR data.

TomoSAR at X- and Ku-Band allows for direct measurement of physical parameters of the dry snow pack:

- Total Snow depth
- Refractive index
- SWE
- Internal layering

Data from AlpSAR 2013 (Rennes 1, ESA)

Rekioua et al., Comptes Rendus Physique, 2017

and Estimated

Demonstrated in various ground campaigns:

- ESA AlpSAR (2013)
- ESA SnowLab & ESA SnowLab NG (2016-2020)
- NASA SnowEx (2018)
- Altay UAV-SAR Ku-Band experiment (2023)

SnowCAT Mission concept

- TomoSAR formation of 3 small satellites, all Tx/Rx (MIMO)
 - reduced costs wrt classic concepts
 - mitigation of temporal decorrelation & atmosphere
- X-Band Radar: large bandwidth (ITU), good compromise between penetration/sensitivity to snow layers
- Dual-Pol
- Horizontal resolution of few meters
- Channel access via Frequency Division Multiplexing (FDM)
 Rainbow system
- Sub-meter vertical resolution by MRWI formation flying
- Incidence angle diversity

 - ➤ transparent snow (snow/terrain or snow/ice interface detectable only) → SWE retrieval by differencing apparent snow depths at two incidence angles

SnowCAT Processing concept

© Aresys

MIMO Correlation TomoSAR

- Issue: design optimal formation from few real elements (i.e., maximize uniformly spaced virtual elements)
 - optimizing virtual monostatic formation equivalent to MIMO brings limited gain
- Alternative approach: correlation tomography

- tomographic imaging depends on the set of available baselines, i.e. differences in sensor positions
- optimization brings more gain!

N real MIMO satellites Up to
$$N_v = \frac{N(N+1)}{2}$$
 Up to $N_d = \frac{N_v(N_v-1)}{2}$ baselines

The number of available baselines <u>ideally</u> goes with up to the 4-th power of the number of physical satellites

Spaceborne MIMO TomoSAR

Single-frequency monostatic SAR

Problem: MRVA assumes isotropic point scatterers, not accounting for spatial decorrelation as a function of baseline

> not directly applicable to the case of TomoSAR

Solution: design the formation to achieve sub-meter resolution while **accounting for decorrelation due to spatial wavenumber shift**

Using different frequency bands results in InSAR pairs with:

- large common bandwidth (high coherence)
- large InSAR wavenumber (fine vertical resolution)
- impossible to achieve with traditional architectures

High number of FDM MIMO acquisitions gives also small InSAR wavenumbers:

large height of ambiguity (TomoSAR sidelobe mitigation)

Expected TomoSAR imaging

- Data generated with diffractive simulator:
 - AlpSAR TomoSAR giving scatterers distribution
 - Projection to SnowCAT with bistatic delays
 - 5 dB SNR
 - SnowCAT formation optimized for:
 - 1.2 m vertical resolution
 - 8.4 m HoA
 - 20° incidence angle on flat terrain
 - TomoSAR focusing through COMET approach (super-res)
- Most critical case: LoS=30°, α =0° (flat terrain)
 - no detection of near surface scattering (lower backscatter)
- LoS= 30° , $\alpha=20^{\circ}$ (foreslope towards Radar)
 - \triangleright incidence angle wrt snow surface β =10°
 - further increment of near surface backscatter.

Expected TomoSAR imaging

- Data generated with diffractive simulator:
 - AlpSAR TomoSAR giving scatterers distribution
 - Projection to SnowCAT with bistatic delays
 - 5 dB SNR
 - SnowCAT formation optimized for:
 - 1.2 m vertical resolution
 - 8.4 m HoA
 - 20° incidence angle on flat terrain
 - TomoSAR focusing through COMET approach (super-res)
- ➤ SnowCAT expected to meaningfully map dry snow vertical structure when LoS wrt snow surface is strictly less than 30°
- Ascending/descending passes & different LoS help in mountain areas (complex topography)
- ➤ Sea ice (no background terrain slope) provides a favourable target for SnowCAT, observed at shallow incidence angle (<30°)

8

Objectives

- Characterization of snow cover in mountain regions at fine spatial resolution:
 - > Snow Depth and Snow Water Equivalent (SWE) can be mapped in mountainous regions, and across hydrological basins.
 - > Quantify winter snow accumulation on glaciers and ice caps
 - > Identify snow pack conditions including areas with wet snow
- Evolution of snow stratigraphy by assimilation into land surface models:
 - Understand assimilation of high-resolution snow stratigraphy into weather prediction models
 - ➤ Assess the role of EO snow stratigraphy for avalanche forecasting, to simulate evolution of the soil temperature, assess thermal insulation, ecosystem evolution, predict crust thickness
- Better understanding of the influence of the snow cover on sea ice:
 - ➤ High-resolution (few meters) and precise freeboard height and snow depth determination on smooth and rough ice, further declined as:
 - > Separate rough and smooth ice by estimation of ice topography at fine resolution
 - > Characterization of snow structure by identification of scattering horizons, for example caused by layers of superimposed ice or a layer of snow ice

Mission scenarios & Radar payload

- SnowCAT is intended to provide systematic observations over Alpine and Arctic regions
 - total coverage about a million square kilometers
 - selected AoIs, based on availability of reference validation data & scientific relevance
 - optimization of retrieval performance wrt orbits and range of incidence angles
- The two phases will be characterized by different sets of InSAR baselines (shorter for land snow, larger for snow-covered sea ice)
- Target is to provide weekly or sub-weekly revisit & about 4/5 Stripmap images per orbit

Parameter	Value
Altitude	500 km
Revisit	<1 week
Acquisition mode	Stripmap
Antenna	Offset reflector
Incidence angle	20°/40°
Ground swath	about 10 km
Frequency	X-band
BW	100 MHz
PRF	6KHz
NESZ	< -17 dB (LoS<25°) <-14 dB (LoS> 25°)
Orbital deviation	<100m

Example Tomo & L2 products

- Layered snow model & E2E simulation
- Layer identification through matching pursuit
- CRB accuracies are compared to L2 retrieval accuracy (standard deviation)
- L2 retrieval accuracy slightly higher than CRB (theoretically consistent)
- Values consistent with scientific targets for relevant applications

Bottom topography CRB: 0.005 m CRB: 0.004 m E2E: 0.009 m E2E: 0.013 m E2E: 0.019 m retrieval accuracy CRB: 0.042 m CRB: 0.030 m CRB: 0.049 m Snow depth retrieval accuracy F2F: 0.058 m E2E: 0.045 m F2F: 0.042 m

SnowCAT tomography from E2E simulations θ = 40° α = 30° SNR = 0 dB Land snow height [m] -300 -200 -100 0 100 200 300 ground range [m] Estimated horizons

SnowCAT tomography from E2E simulations

Example Tomo & L2 products

- Layered snow model & E2E simulation
- Layer identification through matching pursuit
- CRB accuracies are compared to L2 retrieval accuracy (standard deviation)
- L2 retrieval accuracy slightly higher than CRB (theoretically consistent)
- Values consistent with scientific targets for relevant applications

Land snow retrieval accuracy

Simulation parameters

SNR = 0 dB

Estimation window = $50 \times 50 \text{ m}$ (goal requirement) Apparent snow density = 2 m.

	Snow cover intensity is 10 dB weaker than bottom topography		
Geometry	$\theta = 17^{\circ} \ \alpha = 0^{\circ}$	$\theta = 25^{\circ} \ \alpha = 0^{\circ}$	$\theta = 40^{\circ} \ \alpha = 30^{\circ}$
Bottom topography	CRB: 0.011 m	CRB: 0.023 m	CRB: 0.015 m
retrieval accuracy	E2E: 0.038 m	E2E: 0.040 m	E2E: 0.039 m
Snow depth retrieval	CRB: 0.087 m	CRB: 0.180 m	CRB: 0.113 m
accuracy	E2E: 0.110 m	E2E: 0.210 m	E2E: 0.122 m
Localization of an internal	CRB: 0.028 m	CRB: 0.072 m	CRB: 0.036 m
horizon	E2E: 0.040 m	E2E: 0.110 m	E2E: 0.043 m

Snow covered sea ice retrieval accuracy

Simulation parameters

200

SNR = 0 dB

Estimation window = $90 \times 90 \text{ m}$ (goal requirement) Apparent snow density = 40 cm.

Snow cover intensity is 10 dB weaker than bottom topography

Geometry	$\theta = 17^{\circ} \ \alpha = 0^{\circ}$	$\theta = 21^{\circ} \ \alpha = 0^{\circ}$	$\theta = 25^{\circ} \ \alpha = 0^{\circ}$
Bottom topography	CRB: 0.005 m	CRB: 0.004 m	CRB: 0.006 m
retrieval accuracy	E2E: 0.009 m	E2E: 0.013 m	E2E: 0.019 m
Snow depth retrieval	CRB: 0.042 m	CRB: 0.030 m	CRB: 0.049 m
accuracy	E2E: 0.058 m	E2E: 0.045 m	E2E: 0.042 m

-300

Snow on sea ice

-200

-100

SnowCAT tomography from E2E simulations

θ = 40° α = 30° SNR = 0 dB

ground range [m]

SnowCAT tomography from E2E simulations $\theta = 25^{\circ} \alpha = 0^{\circ} \text{SNR} = 0 \text{ dB}$

Dissemination strategy

- SnowCAT is intended to fit innovative scientific programs, possibly embracing Open Science paradigm (e.g., like Earth Explorer, Scout)
 - ➤ L1/L2/L3 products freely available to users
 - dedicated platform for processing/catalogue
 - specific attention to relevant user communities (e.g., ECMWF, Méteo France, NPI, AWI, Centre for Polar Observation and Modelling)

-300

100

200

300

Possible synergies with upcoming EO missions

- Feasibility of InSAR with small satellites is recently demonstrated by Hongtu-1
- SnowCAT to be the first space mission for high resolution 3D snow imaging
- SnowCAT would open to synergistic use with other ESA/Copernicus programs
 - it complements with CRISTAL in solving interpretation problems in complex ice topography
 - retrieval of snow density by integrating the apparent snow depth observed by SnowCAT & CRISTAL
 - SnowCAT snow depth & SWE can serve as a reference for ROSE-L time series, sensitive to snow changing conditions, imperfect phase calibration and unwrapping
 - ROSE-L & SnowCAT can be jointly analysed to derive snow density at local scales
 - SnowCAT stratigraphy can enhance multifrequency capabilities of CIMR (& MetOp-SG) to capture snow structure and ultimately atmospheric information
 - SnowCAT information on snow layering provides insights into radar signal penetration into polar ice, thereby supporting the development of methods to correct *Harmony* penetration bias

A lot of work in progress

X-band snow TomoSAR at Cheneil (Aosta, 2100 m a.s.l.), 40 flights at about 50 m altitude

Sn 樂W C對T

Thanks for your attention!

Altimeters

- Nadir-looking geometry determines sensitivity to specular scattering
- Horizons are detected by ranging
- Horizontal resolution on the order of hundreds of meters across-track
- Coverage along transects

TomoSAR

- Side-looking geometry determines sensitivity to back-scattering
- o Horizons are detected by SAR tomography
- Horizontal resolution on final products the order of few meters in both directions
- Continuous coverage over the imaged swath

