Optimization of Relative Orbital Configurations for the XTI Harmony Mission

Federica Cotugno (1-2), Andreas Theodosiou (3),

Alfredo Renga (2), Riccardo Lanari (1), Björn Rommen (3)

- (1) CNR-IREA, Napoli, Italy
- (2) University of Naples "Federico II", Napoli, Italy
 - (3) ESA-ESTEC, Noordwijk, The Netherlands

Helix Formation during the XII phase of Harmony Mission

Definition: A 3D satellite formation that combines out-of-plane (horizontal) orbital displacements (by relative inclination vector) with in-plane (vertical) orbital displacements (by relative eccentricity vector).

Key benefit: It allows safe distances between companion satellites while keeping radar interferometric performance.

Temporal lag

- It is the delay that aligns the spectral information (support) of the two radar images of Harmony-Aand Harmony-B.
- Critical, especially for studying ocean movements.

Height of Ambiguity (HoA)

- The vertical height that causes a 2π phase shift.
- Smaller HoA—higher sensitivity, but harder phase unwrapping.

$$h_{amb} = \frac{\lambda \cdot R \cdot \sin(\theta_i)}{B_\perp}$$

(in terms of the relative parameters Δe , Δi)

Quick Definitions

Relative Eccentricity Vector Ae (In-Plane Motion)

The relative eccentricity vector is defined as

$$\Delta \mathbf{e} = \begin{pmatrix} \Delta \mathbf{e}_{\mathbf{x}} \\ \Delta \mathbf{e}_{\mathbf{y}} \end{pmatrix} = \begin{pmatrix} \delta e * \cos \varphi \\ \delta e * \sin \varphi \end{pmatrix}$$

KEY MESSAGE: Defines radial and along-track oscillations.

(in terms of the relative parameters Δe , Δi)

Quick Definitions

Relative Inclination Vector Ai (Out-of-Plane Motion)

$$\Delta \mathbf{i} = \begin{pmatrix} \Delta \mathbf{i}_{\mathbf{x}} \\ \Delta \mathbf{i}_{\mathbf{v}} \end{pmatrix} = \sin \delta i \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \sim \begin{pmatrix} \Delta i \\ \Delta \Omega \sin i \end{pmatrix}$$

KEY MESSAGE: Defines cross-track oscillations.

(in terms of the relative parameters Δe , Δi)

Quick Definitions

• $\varphi = \vartheta$ means $\Delta e // \Delta i$. When the condition of parallelism is verified, the minimum radial and cross track separations occur at different points of the orbit (safe condition).

Nominal Helix Formation ($\varphi = \vartheta = 90^{\circ}$)

Only Y-components are non-zero

$$\Delta e_x = \delta e^* \cos \phi$$
 and $\Delta e_y = \delta e^* \sin \phi$
 $\Delta i_x = \delta i^* \cos \theta$ and $\Delta i_y = \delta i^* \sin \theta$
 $\Delta i \sim \begin{pmatrix} 0 \\ \Delta O_x \sin i \end{pmatrix}$

(in terms of the relative parameters Δe , Δi)

Quick Definitions

• $\varphi = \vartheta$ means $\Delta e // \Delta i$. When the condition of parallelism is verified, the maximum radial and cross track separations occur at different points of the orbit (safe condition).

Nominal Helix Formation ($\varphi = \vartheta = 90^{\circ}$)

Only Y-components are non-zero

$$\Delta e_x = \delta e^* \cos \phi$$
 and $\Delta e_y = \delta e^* \sin \phi$
 $\Delta i_x = \delta i^* \cos \theta$ and $\Delta i_y = \delta i^* \sin \theta$
 $\Delta i \sim \begin{pmatrix} 0 \\ \Delta O \sin i \end{pmatrix}$

The helix-safe formation with $\varphi = \vartheta = 90^\circ$ minimizes the secular drift induced by Earth's oblateness perturbations, providing a passively stable.

Optimization for the XTI Harmony Mission Configuration Python Optimization Algorithm to find a Δe and a $\Delta \Omega$

$$\varphi = \vartheta = 90^{\circ}$$

Preliminary Results

$$\varphi = \vartheta = 90^{\circ}$$

Min HoA ~ 30 m

How to change where the minimum and maximum baseline values occur?

First Approach

• Choosing $\varphi = \vartheta = 10^{\circ}$.

• Selecting ∂≠90° introduces a difference in the orbital inclination between the two Harmony satellites.

$$\Delta i \approx \left\{ \begin{array}{c} \Delta i \\ \Delta \Omega \sin i \end{array} \right\}$$

$$\theta = \tan^{-1} \frac{\Delta \Omega \sin i}{\Delta i}$$

Second Approach

- Keeping $\varphi = \vartheta = 90^\circ$ (passively stable configuration).
- Finding an optimal configuration for polar latitudes.

First Approach: Optimal configurations for $\varphi = \vartheta = 10^{\circ}$

First Approach: Optimal configurations for $\varphi = \vartheta = 10^{\circ}$

First Approach: Optimal configurations for $\varphi = \vartheta = 10^{\circ}$

Effects of Introducing $\Delta i \neq 0$

• Due to the **J2 perturbation**, the component Δi_Y increases linearly over time

$$\Delta \bar{i} = \left\{ \begin{array}{c} \Delta \bar{i}_X \\ \Delta \bar{i}_Y \end{array} \right\} = \left\{ \begin{array}{c} \Delta i_X \\ \Delta i_Y + \mathbf{d}(\Delta i_Y)/\mathbf{d}t \end{array} \right\}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Delta i_{Y} \approx -\frac{3\pi}{T}J_{2}\frac{R_{\oplus}^{2}}{a^{2}}\sin^{2}(i)\cdot\Delta i$$

- Result: Angle between the relative vectors increases over time

 → Critical 90° alignment.
- Consequently, periodic maneuvers will be needed to control this drift.

$\varphi = \vartheta = 90^{\circ}$ aloe = 200 m and aloe = 900 m

Δe and Δi become perpendicular after ~ 28 days —delayed risk

14 days

28 days

 $\varphi = \vartheta = 10^{\circ}$ aloe = 215 m and aloe = 161m

Δe and Δi become perpendicular after ~ 13 days —early risk

2 days

6 days

13 days

Second Approach

Python Optimization Algorithm to find a Δe and a $\Delta \Omega$

(only for the poles)

$$\varphi = \vartheta = 90^\circ$$

Fig. Sensitivity at the poles > Sensitivity at the equator.

HoA> 29 m to avoid PhU problems.

B.C a Δe and a ΔΩ at least 100 meters (for safety reasons).

Optimal configurations for the poles for $\varphi = \vartheta = 90^{\circ}$

Optimal configurations for the poles for $\varphi = \vartheta = 90^{\circ}$

How to change where the minimum and maximum baseline values occur?

First Approach

- Choosing $\varphi = \vartheta = 10^{\circ}$.
 - Higher values of perpendicular baseline (up to 1000 m) and sensitivity.

 Low temporal lag values everywhere.

• ΔV for maintaining the formation increases by two orders of magnitude.

Second Approach

- Keeping $\varphi = \vartheta = 90^\circ$ (passively stable configuration).
 - Baseline geometry shifted to maximize sensitivity at the poles (zero now at the equator).

• Max perpendicular baseline values are moderate (up to 400 m).

 Temporal lag kept low, but only at polar latitudes.

 ΔV budget respected both for maintaining formation and switching between configurations.

