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Introduction
» Multistatic SAR UAV swarms and SAR satellite
constellations are increasingly attractive options:
* Including high proportion of receiver-only elements
In swarm, could lead to a cost-effective way of

obtaining additional SAR collections for different A L QINETIQ

SAR modes. Brlght Carbon 6 node
multistatic UAV system

* Planned multistatic constellations include Dstl/Airbus
Oberon, ESA Harmony
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« A multistatic SAR laboratory provides a cost-effective
approach for test and development of multistatic SAR
concepts.
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Cranfield GBSAR Research strands

« Under the Dstl Oberon project, three research strands have been pursued
through PhD projects:

1. Multistatic polarimetric interferometry, Dr Alex Hagelberg
2. Multistatic polarimetric 3D image formation, Richard Welsh
3. Multistatic polarimetric ISAR, Anmol Rattan

« Current MSc projects are investigating:

* Frequency Division Multiplexing (FDM) MIMO 3D SAR, Salman
Albogami

« SAR signature stability under bistatic SAR geometry variation, Dan
Heath
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Ground Based SAR Laboratory

SAR Imaging modes: Monostatic, Bistatic, Multistatic (repeat scans), Interferogram, CCD,
curved / arbitrary trajectories, 3D-SAR, emulated ISAR, moving targets.

* Two vertical SAR Aperture Windows: 3.5m x 1.46m and 2.4m x 1.46m

* Frequency: 1GHz to 50GHz

* Polarisation: Full Quad

* Scene:8m x 8m
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« 5 collections at each of 3 heights with SAR Bistatic angle varying from 46° to 63.4°.
« Two terrain types investigated at x-band: gravel and stones.
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bistatic angle difference between
SAR geometries.
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Bistatic SAR Coherence

« We measure SAR coherence, and investigate component coherence factors:
Ytrue = Ytemp * YSNR * Valg ° Ygeom
N ——
YmisregVbaselineV Scat
« We wish to estimate the RCS term ys.,; SO heed to understand the others, in
particular yp4se1ine 1-€. K-space overlap term.

* However, in SAR near-field, or
alternatively for non-flat terrain, baseline
should be calculated in a spatially variant
manner (per pixel). of

A X K space

Down-range left
Down-range right
Near-range left
Near-range right
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Ground plane projection spatial frequency

- 5 e o e 1 s plots showing the outline of five spatial
The alt :(GHZ)  of formi frequency domain segments in the SAR near-
 The alternative approach of forming : . .
images with only the overlap radar data field regime, corresponding to the four corners
(per pixel) was also implemented. and centre of the measured scene.
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Bistatic SAR Coherence

CCD images for radar trajectory pairs
VH pol stones

CCD images for radar trajectory pairs
VH pol gravel
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 Also, parameter values for a bistatic
coherence prediction model for the two
terrains were found (see references).

Bistatic angle difference (0)

Summary of results showing the bistatic angular difference
extents of coherence (y',,;) performance bands for the gravel
and stone scenes. “Good” CCD performance is represented by
green, “Moderate” by yellow and “Poor” by red.
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For each of 9 receiver positions, the transmitter swept a
finely sampled 2D SAR aperture (blue), at x-band. 2

o

This is equivalent to 9 simultaneous receptions fora ¢ 1
single transmitter aperture.

z(m

Each receiver gives rise to a 3D SAR
image.

If the 9 images are summed
incoherently, then SAR resolution will
not increase, though interpretability
may.

) . Multistatic 3D SAR geometry, with 2D SAR
However, if summation is coherent, transmitter aperture in blue, and nine fixed

then SAR resolution may improve. receiver positions to the left.
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Multistatic 3D SAR image sum Maximum Intensity Projections (MIPs)
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Bistatic 3D SAR image polarimetric decompositions

 Bistatic generalization of Huynen fork
parameter decomposition investigated.

* Coherent sum of the nine Bistatic 3D
SAR collections gave higher resolution
result with similar polarimetric
decomposition results as for individual
bistatic images.

« Particular features and their properties
could be identified, e.g. wire and sphere.
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Coherent sum Huynen 1: Polarizability Coherent sum Huynen 5: Orientation
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Sparse Multistatic 3D SAR

« Sparse aperture 3D point clouds, through combination of volumetric interferograms.
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» Algorithm demonstrated for monostatic, single bistatic, multistatic combinations.
» Generalized to joint polarimetric channel approach.
» Algorithm naturally accepts combinations of non-parallel and non-linear trajectories.

Welsh R, Andre D & Finnis M. (2025). Polarimetry for sparse multistatic 3D SAR. IET Radar, Sonar & Navigation, 19(1)
Welsh R, Andre D & Finnis M. (2024). Laboratory multistatic 3D SAR with polarimetry and sparse aperture sampling. IET Radar, Sonar & Navigation, 18(1)
Welsh R, Andre D & Finnis M. (2023). Volumetric interferometry for sparse 3D synthetic aperture radar with bistatic geometries. Electronics Letters, 59(12)
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Multistatic Radar Workshop 2025,
Laboratory Multistatic SAR

Burning questions?!

Dan André (d.andre@cranfield.ac.uk)
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