

UniversiTà degli STudi di Napoli Federico II

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

Outline

E

- Distributed SAR
 - DSAR and CubeSats
 - Long-baseline bistatic acquisitions
- RODiO as an IOD SAR mission
 - Satellite Design
 - Mission Analysis

Distributed SAR (DSAR) - an example

PRF lower than Nyquist rate to achieve wide-swath imaging

 receivers operating on different satellites that observe the same area with an along-track separation

 unambiguous signal reconstruction in post processing by coherent combination of the raw data collected by each satellite

DSAR and CubeSats

- ? Reduced costs
- ? Increased flexibility

- ? Gentle degradation
- ? Easier replacement

DSAR and CubeSats

DSAR and CubeSats

- ✓ along-track formation
- ✓ no further baseline component
- ✓ capability to control the along-track baseline with accuracy << then V/PRF, i.e. dm scale

DSAR by CubeSats: practical considerations on relative orbits

- Additional baseline components may be helpful to make the formation safer
 - Formation flying by platforms with limited authority of control

- sensitivity to topography
- × loss of coherence
- × loss of control of relative arrangements among the collected samples
- × more complex processing since topography compensation is mandatory

Redundancy (more CubeSats) as a way to make the relationship between DSAR performance and relative arrangement among the receiver less tightly coupled

... in a long-baseline scenario

- low SWAP (Size Weight And Power) features in CubeSats make the use of an illuminator of opportunity a valid alternative
- DSAR as a single bistatic companion in a long-baseline bistatic geometry wrt the transmitter
- from a technological demonstration to a system able to work with large bistatic angles, i.e. demonstration of science and applications
 - bistatic scattering and polarimetry
 - ground motion
 - moving targets
 - radargrammetry

Distributed SAR by formation flying CubeSats in a long-baseline bistatic scenario

- No general answer to conflicting aspects
- Lack of in-orbit experience

RODIO a DSAR IOD mission

- RODiO mission empowers ASI PLATiNO-1 (PLT-1) scopes and application fields
- RODiO is a cluster of 4 16U CubeSats flying in formation among them and with PLT-1 at about 428 km altitude
- Each CubeSat embarks a receiving-only X-band SAR instrument able to collect bistatic echoes exploiting PLT-1 as an opportunity illuminator
- One CubeSat is provided with a flight demonstrator of an innovative hybrid rocket propulsion unit

Phase A: Concluded

	1 CubeSat	4 CubeSats
Resolution	5 m x 5 m	5 m x 5 m
NESZ	< - 9 dB	< - 13 dB
ASR	< - 5 dB	< - 15 dB

Phase B: Approved

Along-track distance from PLT-1	50-90 km
Along-track cluster size	< 600 m
Cluster orthogonal baseline	< 200 m

Preliminary Satellite Design

- 16 U CubeSat with mass and volume compliant with Cubesat deployer
 - About 35 kg margined wet mass
 - maximum protrusion from the rails smaller than 39 mm

Mission Analysis and Formation Flying

Launch, deployment, and formation acquisition

- Shared launch
- Carrier, such as D-Orbit ION-mk03, used for orbit acquisition
- Acquisition of the final formation relies on Regulus by T4i

<u>Maintenance Maneuvers</u> to be applied on two levels:

- Long-Baseline Keeping → To maintain the along-track separation wrt PLT-1
- Formation Maintenance → To maintain the cluster geometry

Vertical and cross-track separations together with significant along-track drift wrt PLT-1 allowed and managed within DSAR image generation

1-year mission enabled by less than 70 m/s deltaV

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

Thank you for the attention

UNINA DSAR GROUP

Alfredo Renga

Maria Daniela Graziano

Antonio Gigantino

Francesca Pelliccia

Maria Salvato

Gianluca Coppa

Technical and Scientific Responsible

Project Manager

DSAR performance and processing

Relative Positioning

Formation Flying

Data-driven Synchronization

alfredo.renga@unina.it

Synchronization Scheme

