

Spaceborne flight formation, dynamics, and navigation

F. Topputo

19 June 2025

OUTLINE

- Introduction
- Mission design
- Notable cases
- Main challenges

Space related activities at Polimi

Teaching

BSc in Aerospace

Engineering

550

Undergraduate

students

MSc in Space Engineering

200

Graduate students

PhD in Aerospace

Engineering

50

PhD students

Yearly enrollment in AY 2022/025 + classes in other courses (EO, telecom, etc.)

Research

- 1 Department (70 faculty members) entirely devoted to aerospace research (only one in Italy)
- Space-related research also spread in other departments

Innovation

- Home of one of ESA's BICs (Business Incubation Center)
- Joint Research
 Platforms (JRP) with
 main national players
 (ASI, Leonardo, TAS-I,
 SITAEL, etc.)

Third mission

- Home of the Space Economy Observatory
- Contributes to shape space policy at national and EU level

The DART Lab

- Deep-space Astrodynamics Research and Technology Laboratory
- 45 full time researchers (7 faculty members, 38 postdoc/PhD/RA)

Mission design

- Mission design to plan and organize a space mission from concept to execution
 - Output: Mission profile, phases, conops, etc.
 - How: Paper and pencil
- Mission analysis analysis of satellite orbits to verify mission requirements and define payload &system requirements
 - Output: Geometric, knowledge, dispersion analysis, delta-v budget, etc.
 - How: COTS or custom, sophisticated tools depending on the mission

Notable case 1: DROID

Credits: JPL Credits: C. A. Raymond et al

- Mothership + 2 CubeSats
- Low-frequency radar
- Mono & bistatic observations
- Low orbits used

Notable case 2: RG\$

Notable case 3: Milani

Close range phase

Sun

Main challenges and trends

- Reduce on-ground operations to bear minimum
- Favour full mission cost scalability

Interplanetary Cube Sats GNC: an emerging, yet challenging topic.

Hints for future research:

- Autonomous navigation
- Autonomous guidance

EXTREMA

To what extent can we navigate the solar system free of human supervision?

The Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions in Autonomy (EXTREMA) project wants to challenge and revolutionize the current paradigm under which spacecraft are piloted in the interplanetary space.

Goal: To enable deep-space CubeSats with autonomous GNC

capabilities

Pillar 1

Autonomous Navigation

Pillar 2

Autonomous Guidance

Pillar 3

Autonomous Ballistic Capture

Experiment 1

EXTREMA Optical Facility

Experiment 2

EXTREMA Thrust Test Bench

Experiment 3

Ballistic Capture Corridors

EXTREMA Simulation Hub (ESH)

IMPACT

Spaceborne flight formation, dynamics, and navigation

F. Topputo

19 June 2025